
CiGRAM Documentation
Release 1.0.0

James Gilbert

Mar 09, 2018

Contents:

1 Generating networks 1

2 LFR Benchmarks 3

3 Introduction 5

4 Installation 7

5 Testing 9

6 Acknowledgements 11

7 Indices and tables 13

i

ii

CHAPTER 1

Generating networks

Generating networks in CiGRAM is straightforward.

from cigram import generate_graph
n = 1000
avg_k = 4.95
k = 1
graph, positions, communities = cigram_graph(n, avg_k, k)

Here n is the number of nodes, avg_k is the desired average degree and k is the number of communities. Note that the
number of communities here is fixed at 1, so the graph will not generate artificial clusters.

The resulting returned tuple of graph, positions and communities is a networkx graph object, a dictionary of
points upon a unit circle for each node, and a dictionary for the community membership of each vertex.

More complex parameters allow you to generate different heterogenous degree distributions. This is controlled by the
parameters sigma_f and sigma_r which have an effect on the underlying probability space for the connections between
nodes.

sigma_r = 0.8
sigma_f = 0.8
graph, positions, communities = cigram_graph(n, avg_k, k)

To generate networks with assortativity this can be specified with the parameter a (by default this is 0).

1

CiGRAM Documentation, Release 1.0.0

2 Chapter 1. Generating networks

CHAPTER 2

LFR Benchmarks

CiGRAM also includes the generation of Lancichinetti–Fortunato–Radicchi (LFR) benchamrks. This was imple-
mented due to issues found with the python implementation in NetworkX. This version is mostly a tidied up version
of the original C++ code. To use:

from cigram import lfr_benchmark_graph

params = {
'n': 10000,
'average_degree': 10,
'max_degree': 1000,
'mu': 0.5,
'tau': 2.0,
'tau2': 2.0,
'minc_size': 3,
'maxc_size': 1000,
'overlapping_nodes': 0,
'overlapping_memberships': 1,
'seed': 1337

}

graph, comms = lfr_benchmark_graph(**params)

3

CiGRAM Documentation, Release 1.0.0

4 Chapter 2. LFR Benchmarks

CHAPTER 3

Introduction

CiGRAM is a Circular Gaussian Random Graph Generator written in python and C++. The objective of cigram is to
generate large, complex networks with realistic properties such as high clustering, heterogenous degree distributions,
community structure and assortativity.

These documents intend to describe how CiGRAM works, how you can generate networks with it and how you can
use the network fitting package within this project to match the desired properties of real world networks. This docu-
mentation intends only to give a high level overview of the project. For more details please see the initial publication
of CiGRAM:

Gilbert, J.P., 2015. A probabilistic model for the evaluation of module extraction algorithms in complex biological
networks (Doctoral dissertation, University of Nottingham). http://eprints.nottingham.ac.uk/30524/

5

http://eprints.nottingham.ac.uk/30524/

CiGRAM Documentation, Release 1.0.0

6 Chapter 3. Introduction

CHAPTER 4

Installation

Install with pip from pypi

pip install cigram

Alternatively, install from sources:

pip install -e .

It is reccomended that installation from source is done inside a virtualenv.

7

CiGRAM Documentation, Release 1.0.0

8 Chapter 4. Installation

CHAPTER 5

Testing

To confirm that cigram works on your system and the build is functioning use the included tests. These are written in
py.test. To run simply install py.test (a requirement of CiGRAM and run).

pytest

This should run without error.

9

CiGRAM Documentation, Release 1.0.0

10 Chapter 5. Testing

CHAPTER 6

Acknowledgements

None of this work would have been possible without the help of numerous talented people. This includes the supervi-
sion of Jamie Twycross, Andrew Wood, Andrezj Bargeila, Natalio Krasnogor and Michael Holdsworth. Much of this
work was also supported by Paweł Widera.

11

CiGRAM Documentation, Release 1.0.0

12 Chapter 6. Acknowledgements

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

13

	Generating networks
	LFR Benchmarks
	Introduction
	Installation
	Testing
	Acknowledgements
	Indices and tables

